Silicon Mobility

Application software for the control of inverter and e-motor delivering the highest energy efficiency

Advanced control algorithms

OLEA[®] APP - INVERTER HE

- Software **flexibility** and **modularity**
- Adaptable for further differentiation
- Optimized Pulse Pattern & Adaptive PWM Control
- Short time to market

OPP

• ISO 26262 ASIL-C certified design ready

OLEA® APP INVERTER HE is a turnkey software application for the control of inverter and electric motor delivering the highest level of energy efficiency and optimized for the OLEA[®] FPCU.

OLEA® APP INVERTER HE integrates all the necessary functions of a safe torque or speed regulation of electric motor control. The software's architecture is based around a core application that includes unique adaptive algorithms which applies the most suitable control strategy upon requested power, motor angle and speed. OLEA[®] APP INVERTER HE cuts energy losses into the power switches and into the electric motor while extending the operating range of the e-motor.

OLEA[®] APP INVERTER HE has several customizable modules to interface any system configuration such as power transistors, gate drivers' type, e-motor topology, position sensor and faults management. The software interface is compliant to AUTOSAR 4.3.

Introducing the OPP technology

OPP modulation is entirely based on the electrical angle rather than conventional time-based modulations such as SVPWM and DPWM. OPP applies a repetitive periodic switching pulse pattern. Phases are shifted relatively from one to another by $2\pi/3$.

This allows to optimize the patterns upon user-chosen cost functions evaluating several criteria independently or all together such as:

- Inverter losses
- THD
- Motor losses
- Minimum NVH, etc.

Advanced Algorithms

- Field Oriented Control (FoC)
- Adaptive PWM Control (APC) •
- Space Vector Modulation (SVPWM) •
- Optimized Pulse Pattern (OPP) •
- Selective Harmonic Elimination (SHE) Voltage Phase Compensation (VPC)
- - Compatible with all types of position sensor (Resolver, Hall-effect) •
 - Can be interface with external or embedded VCU/TCU

* Compared to WLTP** simulation of state-of -the art FoC, SVPWM and Full Wave algorithms executed on conventional MCU ** Worldwide harmonized Light vehicles Test Procedures

SVPWM

Inverter/e-motor Topologies

- OLEA[®] APP INVERTER HE can be customized to control any e-Powertrain system:
- Compatible with all power transistor technologies (MOSFET, IGBT, SiC and GaN) Support any e-Motor voltages (<60V and > 60V). •
- Support all types of e-Motor (PMSM, WRSM and more) •
- Support all number of pair poles (1, 2, 4, 8 and more) •
- Support 3 or 6 phases current acquisition

Adaptive PWM control

The APC reduces energy losses of both the inverter and the e-motor power stages, while mitigating Noise, Vibration and Harshness effects.

Based on the electrical angle position and the requested power (Torque x Speed), APC orchestrates several advanced algorithms to suppress useless switching events on the inverter and to improve the e-Motor Torque/Speed operating points. These advanced algorithms are:

• Optimized Pulse Pattern (OPP) – Offline and online calculated switching patterns reducing inverter losses including SHE

• Selective Harmonic Elimination (SHE) – Eliminate harmonics to reduce iron losses and NVH effects

• Voltage Phase Compensation (VPC) – Better correct the magnetic angle of the e-Motor to extend its operating range and to better reduce iron and copper losses

Impact of algorithms per type of losses:

Losses Type		Algorithms	Impact
Inverter	Switching	APC + OPP + Soft-Switching	Reduction of the losses > 70%
	Conduction and others		
e-Motor	Iron	APC + SHE + VPC	Reduction of the losses > 80%
	Copper	APC + ONR + VPC	Reduction of the losses > 30%

Pattern Generation

OLEA[®] APP INVERTER HE is delivered with an off-line tool to generate the set of patterns optimized for the target system. This tool enables to generate the best patterns among a large multi-dimensional space upon several optimization criteria and parameters.

Optimization criteria

- Scoring functions
- Constraints

Key deliverables

- Licensable as object code
- Fully featured API for an efficient integration with custom software
- Fast configuration and calibration with OLEA® COMPOSER T222 e-motor GUI
- OLEA® T222 FPCU Technical Reference Manual, OLEA® COMPOSER T222 SDK and User's Guides

Starter Kit for rapid protoyping

OLEA[®] COMPOSER – T222 HVIC Starter Kit

System Parameters

• E-motor parameters

Inverter properties

Set of OPP tables

Alternative sub-optimal

Output results

patterns

Set points (speed, torque)

SiC inverter platform with CISSOID

OLEA[®] APP INVERTER HE implemantion

Efficiency Map with OLEA[®] APP INVERTER HE

300kW SiC Inverter platform with Wolfspeed and Analog Devices

Legal Disclaimer: the information given in this Brief shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Silicon Mobility hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. ©2022 Silicon Mobility. All trademarks are property of their respective owner.

www.silicon-mobility.com sales@silicon-mobility.com 535 Route des Lucioles Les Aqueducs – Bâtiment 2 06560 Sophia Antipolis France