

OLEA[®] LIB

Algorithms and function software libraries

Rich collection of advanced software and automotive algorithms optimized for OLEA[®] FPCU, boosting application performance and enabling rapid time to market

- Configure and **customize** complex algorithms
- **Cutting edge** inverter, DC-DC converter and OBC control systems
- x40 computation **speed improvement** on advanced mathematical and computation functions
- Design and development turnaround in minutes with full integration into OLEA[®] COMPOSER

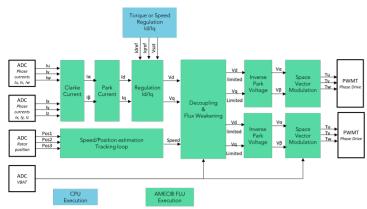
Customize and boost your control system

Boost performance: Software and algorithms included into OLEA[®] LIB have been optimized for OLEA[®] FPCU and take all the benefits of the hardware resources and accelerators available (mathematical units, DSP functions and standard peripherals) to deliver the highest achievable performance and integration.

Shorten development times : By using OLEA[®] LIB[®], developers drastically reduce the time required to develop, optimize, test and calibrate their algorithm's on OLEA[®] FPCU.

OLEA[®] LIB is packaged into three complementary levels of integration selectable upon the application needs:

OLEA® LIB System: Efficient System Functions

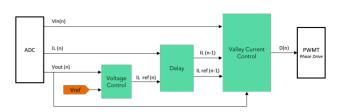

OLEA® LIB Algo: Specialized and Enhanced Algorithms

OLEA® LIB Math: Accelerated Mathematical Functions

Libraries comes as building blocks available as Reference and Target Models for MATLAB[®] Simulink, or as HDL predefined blocks, and tuned for best use of OLEA[®] FPCU. Models out of OLEA[®] LIB are directly usable within OLEA[®] COMPOSER for MiL simulations and automatic code generation.

OLEA[®] LIB System Features

Inverter Control


Complete inverter control for PMSM or WRSM motors based on field oriented control and space vector modulation algorithms.

All system functions include:

- MATLAB / Simulink reference model
- MATLAB / Simuling target model ready for code generation

OLEA[®] LIB Algorithm Features

- Speed regulation with D/Q-Axis control PI regulators with Anti Wind-up. IDQ regulation from torque set point DQ-axis Reference current computation
- Torque control with D/Q-Axis reference current computation
- Clarke Current: 3 to 2 phases or 6 to 2 phases current transformation
- Park Current: 2 phases current rotation from αβ to DQ framework
- Inverse Park Voltage: DQ framework reference voltage transform into $\alpha\beta$ voltage space vector
- DQ-axis Decoupling and flux weakening

DC-DC Converter Control

Buck-Boost Valley Current control function supporting up to 6 DC-DC converters in parallel.

- Configurable parameters via GUI
- Diagnostic functions
- Space Vector Modulation
- Position and speed estimation based on Tracking-loop algorithm
- Position and speed estimation: for standstill, low-speed and high-speed operating modes
- Buck-Boost valley current control
- Voltage control

OLEA[®] LIB Math Features

Operator	Description	Exec. Cycles	# of Operators*
CORDIC (COordinate Rotation DIgital Computer)	$\begin{array}{ll} \cdot x \cdot \cos(\theta) - y \cdot \sin(\theta) & \cdot x \cdot \cosh(\theta) - y \sinh(\theta) \\ \cdot y \cdot \cos(\theta) + x \cdot \sin(\theta) & \cdot y \cdot \cosh(\theta) + x \sinh(\theta) \\ \cdot \tan\left(\frac{y}{x}\right) & \cdot \tanh\left(\frac{y}{x}\right) & \text{with } \frac{y}{x} \in [-0,8;0,8] \\ \cdot \sqrt{x^2 + y^2} & \cdot \sqrt{x^2 - y^2} & \text{with } \frac{y}{x} \in [-0,8;0,8] \end{array}$	Resolution in bit + 4	• 6 in parallel
Division	A/B = Quotient with remainder	26	• 3 in parallel
Square root	• \sqrt{R} in unsigned mode • $\sqrt{ R }$ in signed mode	2	• 3 in parallel
Matrix Multiplier	• $\begin{bmatrix} r_0 \\ r_1 \end{bmatrix} = \begin{bmatrix} a_0 & a_1 & a_2 & a_3 & a_4 & a_5 \\ a_6 & a_7 & a_8 & a_9 & a_{10} & a_{11} \end{bmatrix} \times \begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \end{bmatrix}$ • $r_0 = \sum_{i=0}^{iter} (a_i \times b_i \gg Q_f)$ • $r_1 = \sum_{i=0}^{iter} (a_{i+6} \times b_i \gg Q_f)$	lter + 4	• 3 in parallel
PID (Proportional Integral Derivative controller)	Saturation with Anti-windup: • Back calculation : <i>if saturation then integral</i> _n = $K_i \times e_n - K_b$ (<i>pid</i> _{n-1} - <i>pid_sat</i> _{n-1}) + <i>integral</i> _{n-1} • Integral clamping : <i>if saturation and sign</i> (<i>pid</i> _{n-1})= <i>sign</i> (e_{n-1}) then integral _n = <i>integral</i> _{n-1}	8	• 6 in parallel

*OLEA LIB Math is using hardware dedicated resources available in OLEA

Silcon Mobility

sales@silicon-mobility.com 535 Route des Lucioles Les Aqueducs – Bâtiment 2 06560 Sophia Antipolis